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Numerical Study on the Motion of Azimuthal
Vortices in Axisymmetric Rotating Flows
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A rich phenomenon in the dynamics of azimuthal vortices in a circular cylinder caused by the
inertial oscillation is investigated numerically at high Reynolds numbers and moderate Rossby
numbers. In the actual spin-up flow where both the Ekman circulation and the bottom friction
effects are included, the first appearance of a seed vortex is generated by the Ekman boun
dary-layer on the bottom wall and the subsequent roll-up near the corner bounded by the side
wall. The existence of the small vortex then rapidly propagates toward the inviscid region and
induces a complicated pattern in the distribution of azimuthal vorticity, i.e. inertial oscillation.
The inertial oscillation however does not deteriorate the classical Ekman-pumping model in the
time scale larger than that of the oscillatory motion. Motions of single vortex and a pair of
vortices are further investigated under a slip boundary-condition on the solid walls. For the case
of single vortex, repeated change of the vorticity sign is observed together with typical pro
pagation of inertial waves. For the case of a pair of vortices with a two-step profile in the initial
azimuthal velocity, the vortices' movement toward the outer region is resisted by the crescent
shape vortices surrounding the pair. After touching the border between the core and outer
regions, the pair vortices weaken very fast.
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1. Introduction

Rotating flows are ubiquitous in natural and
technological environment. In view of its conse
quence in engineering and scholarly interest, it
has drawn much attentions of the fluid dynami
cists from long time ago. Its application can be
found in broad areas such as turbomachinery,
oceanic flows, atmospheric flows, the motion of
liquid fuel within space crafts, mantle movement
inside the Earth, and spin coating, etc. In more
specific terms, the rotating flows are characterized
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by relative flows under a background rotation;
the ratio of the representative magnitude of rela
tive-flow velocity and that of the background
rotational velocity is defined as the Rossby num
ber. The relative flows are intrigued by various
mechanisms. In the spin-up flows, the rotational
speed is just increased abruptly, and the subse
quent flow development, i.e. decay, in time be
comes the primary interest. The relative flows can
be generated by other forces such as the buoyant
force, the magnetic force, and the surface force
driven by winds. Among these, the body force
given by the increase (or decrease in the 'spin
down' case) of the rotational speed presents the
most fundamental subject known as 'spin-up'
flow.

Early investigation on the spin-up flows has
focussed on axisymmetric containers and aimed
to understand the basic underlying mechanism
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(2)

associated with the decaying of the primary
flow. Greenspan and Howard (1963) studied on
the spin-up of fluid in between two infinite
parallel plates. They showed that at small Rossby
numbers the linearized version of the governing
equations can well predict the spin-up time.
Wedemeyer (1964) proposed an approximation
method for treating the non-linear equations
for the spin-up from rest (Rossby number = 1).
He applied his approximation method to the
circular-cylinder case and showed that during
the spin-up process a shear discontinuity front
appears near the side wall between the regions of
positive and negative vorticity and it moves to
ward the central axis.

On the other hand, recently there have been
increased interests in improving the Ekman
pumping models (e.g. Hart 1995, 2000; Zavala
Sanson and van Heijst 2000; Suh and Choi
2002). The proposed models compare well with
experimental results even in the non-axisymme
tric container such as a rectangle. However it still
demands further improvement especially in the
very beginning stage and at moderate Rossby
numbers. As a fundamental motivation of this
study, it is assumed that the inertial oscillations
(see e.g. Greenspan 1968) may be one of the key
reasons for the discrepancy. For instance Cederlof
(1988) suggested that the inertial oscillation in
the spin-up inside a circular cylinder may give
rise to Lagrangian drift motion. Dolchanskii,
Krymov and Manin (1992) showed experiment
ally that considerable amount of inertial oscilla
tions takes place in the circular cylinder of small
ratio of height to a diameter. The inertial oscil
lations also have been observed numerically by
Hyun, Fowlis and Wam-Varnas (1982). How
ever there have been no detailed reports on the
study of inertial oscillations and its effect on the
decay of the primary azimuthal flows.

In the literature however most studies concern
ing the inertial oscillation are oriented to the
structure of the wave field, and no studies have
been given to its connection with the bizarre
behavior of the horizontal vortices (here the term
'horizontal' indicates 'normal' to the rotational
axis which is vertical) within the rotating fluids.

The present study is thus purposed to investi
gate the motion of the horizontal vortices and
the influence of the inertial oscillation to the
vortices' motions. For simplicity, we focuss our
attention to the axisymmetric-flow configuration,
and use numerical methods to obtain the solu
tions of the basically two-dimensional Navier
Stokes equations. In Section 2, the problem is
formulated and the numerical methods are des
cribed. To verify the two-dimensional numerical
code, we also employed one-dimensional equa
tions by using the Ekman pumping models deve
loped by Suh and Choi (2002). The Wedeme
yer's solution is also presented in this section
for further verification of the two-dimensional
code. A simple linear analysis for the inertial
oscillation is given in Section 3. The numerical
results and discussions are then presented in
Section 4, and final conclusions are summarized
in Section 5.

2. Formulation, Numerical
Methods and Analysis

2.1 Two-dimensional equations
Consider a circular cylinder of radius R con

taining a viscous fluid of density p and viscosity
II with a free surface and rotating in a constant
angular velocity Qs. The flow is maintained in a
solid body rotation. Then at an instant of time the
rotational speed is suddenly increased to 1.1=
.Qs+LJ.Q. Assuming that the flow is axisymmetric
and taking 1/LJ.Q, R, RLJ.Q, pRz.QLJ.Q as the
reference quantities for the time, length, velocity,
and pressure, we can write the non-dimensional
governing equations as follows.

3v QV av uv 2 I
df+uar+waz+y+S-u= Re £::"zv (I)

K+uK+wK- ul; +.l- av
z
+1.-~

at ar 3z r r az e QZ

I
= Re £::"21;

(3)

where t is time, (r, z) the coordinates along
the radial and axial directions, respectively, u,
v and w the velocity components in the radial,
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azimuthal, and axial directions, respectively, p
the pressure, and Sthe azimuthal vorticity; s=
owlor-ouloz. Here the coordinates are coro
tating with the circular cylinder. The stream func
tion ¢ is related to the velocity components as

the time integration for the S-equation is per
formed by the forth-order Runge-Kutta method,
while the stream function equation is solved by a
conjugate gradient method.

v=vo(r), s=so(r, a) at t=O (6)

(8)

(10)

I rr
U= hr Jo rwEdr

Analysis for the bottom boundary-layer flow
provides the Ekman pumping velocity WE;

2.2 One-Dimensional equations with an
improved ekman pumping model

When the Rossby number e is small enough,
the Taylor-Proudman theorem applies and the
quasi-geostrophic flow is governed by

Note that the first term on the right-hand side
corresponds to the classical linear pumping mo
del. The higher-order correction on the right
hand side is in fact consistent with that derived
by Hart (2000) except that his paper has typogra
phical errors.

Although U at the side wall is in principle
zero, a small non-zero of U at this wall can
lead to the overall numerical instability. Thus, at
every time step we subtract from WE the averaged
quantity iiJ defined as

where U and V denote the depth averages of u
and v, respectively, and f::,.1=()2!ar2+alrar

1/r 2
• The radial velocity component U is given

by the integration of the continuity equation in
terms of the Ekman pumping velocity WE from
the edge of the boundary layer near the bottom
wall;

WE=J.. IS [(oV +JC)2VRe or r
(9)

(
9 V sv+ 7 V!fV+ 7 sv oV)]

r s SOrar 80 or2 80arar

(4)u=~ w=--!.2J:1!...
oz' r or

Impermeable conditions are employed on all
the boundaries surrounding the fluid. The free
surface at z=h is set with vanishing shear stress.
On the solid walls at z=O and r= I, the no
slip conditions are applied in Section 4.1, where
the symptom of the inertial oscillation caused
by the corner vortex in the actual spin-up flows
is presented, and the fluid's slip is permitted in
Section 4.2, where the numerical solutions for
the behavior of isolated vortices without being
bothered by the presence of the solid boundaries
are presented.

The initial conditions for the equations (1) and
(2) are

Re= R2~Q , e= ~, h=~ (5)

and the operator .6.2 denotes .6.2=()2lor2+o1

rar -II r2+()2I oz2. Three dimensionless para
meters are Re, the Reynolds number, e, the
Rossby number and h, the dimensionless liquid
depth, defined as

In Section 4.1 we specify Vo= - r and ~o=O cor
responding to the spin-up from rest. In Section
4.2 we set essentially an arbitrary profile for Vo
and set so=O all over the domain except within
one or two small circles in which uniform vor
ticity is specified.

To enhance the grid resolution near the bottom
wall, an exponential function is used with two
parameters band Zo;

where 1J is a new variable to be used In the
numerics with a unform grid size.

The governing equations (I) through (3) are
discretized by the centered difference method and

2.3 Analysis for one-dimensional inviscid
flows with linear pumping law

If the linear pumping law is considered, U
becomes from (8) and (9)
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( IS)

(16)

( 17)2k
S

In terms of the stream function this is written as

EJk2+t2

Typically the frequency S is of 0 (IIE). Also

note that the frequency takes a maximum value

The separable form of the solution can be ex

pressed as

ISmax=-;

4. Results of the Numerical
Computations

where k is the wave number along the z-direc
tion, l corresponds to the wave number along the

r-direction, and S is the frequency given by

when the flows in the axial plane are purely

radial, i.e. l =0, while it becomes zero, or the

flows are steady, when the streamlines are verti

cal, i.e. k=O. Otherwise, the wave propagates

vertically with the phase velocity sl k, or 2/

(EJk2+/2
) . Thus the mode propagates faster at

lower Rossby numbers.

Equation (14) also implies that vertical gra

dient in the radial velocity u causes an increase

of the time rate of the azimuthal vorticity ~.

Therefore, even when the flow field is initially

irrotational, if there is a region where the radial

velocity has a vertical gradient, then a vorticity

field is induced in the region as will be shown in

the following section.

4.1 Spin-up flows within a circular cylinder
The two-dimensional numerical computations

for the spin-up process of a viscous fluid in a

circular cylinder are performed with grids 201 X

101 at Re=IOOOO, E=h=0.5 and with grids

301 X 151 at Re=30000, E=h=O.5. For the

strain of the z-coordinate, b=3 and Zo=O.1 are

chosen. In most cases .1t=O.OI gives the con

verged solutions. These computational experi

ments are purposed firstly to verify the numerical
(14)

( (2)

(lla)

(II b)

(13b)

-r

r-Ilrv

v

for r < rs, and

for r ~ rs; where re is determined by

re= [I - E+ Ee-JEtll.£]1/2

This equation admits a separation-of-variables

form as a solution. It can be shown that the

solution can be written as

3. Inertial Oscillations

where E=e/Re indicates the Ekman number

based on the radius of the cylinder (not on the

liquid depth). Substituting this into the inviscid

version of (7) gives

The most important phenomenon in asso

ciation with the motion of the azimuthal vor

tices under the background rotation is the 'iner

tial oscillation' or the 'inertial wave' (see e.g.

Greenspan, (968). The time scale of the inertial

motion is much smaller than the one of the advec

tion in the axial plane at low Rossby numbers.

Thus in the inviscid and low-Rossby-number

limit, the only terms which make balance with

the Coriolis terms in equations (I) and (2) are

avIat and a~lOt. Then (I) and (2) reduce to

av 2 ( )af=--;u 13a

K=_~.E!:!-
at E az

Eliminating v from these two gives

The above solutions are firstly derived by

Wedemeyer (1964), and later by Maas (1993)

and van de Konijnenberg and van Heijst (1995).
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code by comparing the solutions with those given
by the one-dimensional model, and secondly
to visualize the complex evolution of the corner
vortex caused by the background rotation, i.e.
inertial oscillation.

Figure I shows the time history of distribu
tions of the vertical vorticity at the free surface
to (z, h. t) = [a(rv) / riirl~=h obtained by the
two-dimensional calculation. Also shown in this
figure are distributions of the vertical vorticity
computed by the one-dimensional equation as
well as the Wedemeyer's analytic solutions. It is
seen that the one-dimensional numerical results
are in reasonable agreement with the two-di
mensional ones. On the other hand due to the lack
of the viscous effects the Wedemeyer's solutions
are only useful in predicting the location of the
propagating front and the level of vorticity within
the core, i.e. for r< re. We also note that the two

numerical results show some discrepancy in the
outer region. However these results suffice to
prove the validity of the two-dimensional code.

Figure 2 reveals, in the axial plane, the velo
city vectors composed of u and w at two ins
tants of time obtained by two-dimensional com
putation for h=€=O.5 and Re=3OOO0. Indeed
the velocity magnitude in this plane is shown to
be much smaller than that of the azimuthal ve
locity (refer to the magnitude of the reference
vector on the top of each figure). However, it is
this flow that is responsible for the much faster
spin-up than would be attained if only the
molecular diffusion were considered (e.g. Zavala
Sanson and van Heijst 2000; Suh and Choi
2002). Thus understanding the evolution of flow
patterns in the axial plane seems to be important
for e.g. improvement of the Ekman pumping
model. The vortical flows shown in this plane
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Fig. 1 Distribution of the vertical vorticity (J) at z= h given by two-dimensional numerics (solid line), one

dimensional numerics (dash-dot) and Wedemeyer's solution (dashed) for Re=3000 and h=e=O.5 at

four instant of times
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the two-dimensional numerics for e=0.2 and
0.5. It clearly exhibits the oscillatory motions
the period being much shorter than the spin-up

time scale 0 (!If/ he). It also demonstrates the
higher frequency at lower Rossby numbers in
line with the analysis presented in the previous
section. On the other hand, the fundamental as
sumption behind the Ekman pumping models
proposed hitherto is that the radial component of
velocity remains z-Independent, except of course
in the Ekman boundary-layer on the bottom
wall. In this sense the considerable variation of
U shown in the axial plane (Figure 2) may cast
doubt on the validity of the model. Some authors
(e.g. Zavala, Sanson and van Heijst, 2000) sug
gest to use depth-averaged quantities instead of
requiring the z-independency; however the re
sultant equations for the fluid motions in the
axial plane are the same as far as the effect of the
oscillatory motions is not considered.

Figure 4 shows the time average of the velo
city vectors presented in Figure 2. We can see
that in the region r >0.4 the radial component u
is almost uniform along the vertical coordinate.
This means that the z-independent nature of u
is guaranteed only in a time-average sense or
in the spin-up time scale but not in the time
scale of the inertial oscillations. Then the next
question is ; what will be the effect of the inertial
oscillation on the momentum transfer between
the Ekman layer and the bulk fluid? This issue
may play one of the key roles in improvement of
the Ekman-pumping model.

Fig.4 Velocity vectors in the axial plane averaged
for 30-2i'l'~t~30 given by two-dimension
al numerics for the same parameter set as
figure I
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however evolve very fast and the evolution is not
characterized by advection but by inertial waves
or oscillations.

Figure 3 shows the temporal behavior of v (0.7,
h, t) and v(0.7, h/2, t) up to t=20 given by

(b) t=45

(a) t= 15
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Fig.2 Velocity vectors in the axial plane computed
by two-dimensional numerics for the same
parameter set as figure 1

Fig. 3 History of Vn (the azimuthal velocity com
ponent evaluated at r=O.7 and at z=h, i.e.
at the free surface; solid lines) and urr (the
one at r=O.7 and z= h/2; dashed lines),
given by two-dimensional numerics for the
same parameter set as figure 1



Numerical Study on the Motion of Azimuthal Vortices in Axisymmetric Rotating Flows 319

Figure 5 shows a sequence of initial develop
ments of the streamlines and the azimuthal vor
ticity contours in the axial plane. This sequence
reveals the generation mechanism of the inertial
waves. At first (/=2), a corner vortex is gen
erated by the roll-up of the vortex sheet of posi
tive vorticity on the bottom wall. Due to the
image vortex behind the side wall as well as the
strong blowing from the Ekman boundary-layer,
this vortex moves up (t=3). As a result, the fluid
situated in the left-hand side of this vortex moves
down toward the right-hand side and then turn
to the left to be finally sucked into the Ekman
boundary-layer on the bottom wall (t=3). On
the other hand the region very close to the vor
tex core at the left-down side (i.e. near r=0.9
and z=O.1 at t=2) is characterized by a negative
value in au!az. As shown in the previous section
(via the equation (14)) this gradient induces a
negative vorticity in the same place (t=3, 4). The
vortex is propagated upward and toward the wall
while becoming slender. Simultaneously in the
region between the mentioned vortex and the bot
tom wall a positive vorticity is generated (/=5).
After this, the mentioned positive vortex pattern
travels toward the wall while inducing another
negative vortex behind it, and so on. Although
the vortices' propagation is toward the side wall,
the movement of the fluid element is toward the
central region in a time-average sense as shown
in Figure 4. Vortical flows become more pro
nounced in the core at later time (see Figure 2) ;
we can see from Figure 4 that a slightly wavy
pattern still exists in the core even if the velocity
components are time-averaged.

Hitherto we have seen the axisymmetric flow
evolutions in the actual spin-up flows. In sum
mary, the complex flow pattern shown in the axial
plane is caused by the mechanism of inertial os
cillation the perturbation being the corner vortex
generated at the beginning of the spin -up process.
The corner vortex is of course generated by both
the Ekman circulation and the bottom friction. In
the next section, to focuss our attention on the
motion of the azimuthal vortex we will consider a
single vortex or a pair of vortices, in a form of
vortex patch, without the Ekman circulation or

frictions of the bottom and side walls.

4.2 Motion of azimuthal vortices under a
background rotation

Figure 6 shows the time evolution of strea
mlines and vorticity contours obtained by the
numerical computation of (I) through (3) now
with homogeneous boundary conditions

v==IjJ=t,=O at r=O, 1 (I8a)

avaz = 1jJ= t,=0 at z=O, h (I8b)

The flow is induced only by a circular vortex
patch of radius 0.05 having a uniform vorticity
with magnitude ~= I situated initially at the
position, r=0.9 and z=0.2, in the similitude of
the corner vortex shown in Figure 5 ; otherwise,
the entire domain is initially quiescent. All the
other parameter values used in the computation
is the same as Figure 1. Since the boundary con
ditions on the lower and side walls are set as
(18a) and (18b), slip of the fluid element is
permitted on the walls. Thus, we have neither
Ekman pumping effect from the lower wall nor
friction effect on the side wall so that we can
study the vortical motions in a completely solitary
status.

The only no-slip condition at the side wall,
i.e. the condition at the wall r= I, shown by
the equation (18a) in fact exerts no fundamental
effect on the vortices' dynamics because the boun
dary layer adjacent to the side wall caused by the
no-slip condition for v remains very thin, being
attached to the wall during the course of the
vortical development.

At t=l most of the domain is characterized by
a weak stream except near the side wall where the
vortex patch resides; since the vortex patch is
initially positive, the vortical flow in this region is
counterclockwise. At t=2 however the flow di
rection is reversed because the central region of
the vortex patch is switched from positive to
negative vorticity. It can be shown that for a small
circular patch the vorticity keeps its uniform dis
tribution but the magnitude is changed repeatedly
with the angular frequency 2/e. On the other
hand each of the vortices with negative vorticity
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generated on the right-and left-hand sides res

pectively of the initial patch (shown at t= 1)
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tends to take a 'X' shape ([=3) and is pushed

toward the side wall. Near r=O.8 and z=O.2
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Fig. 5 Streamlines (left) and vorticity countours (right) obtained by two-dimensional numerics for the same

parameter set as figure I. Increment of stream functions is 0.0002, and the vorticity is colored white for

the value greater than 0.2 and black for lower than -0.2
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another vortex with positive vorticity is generated (t=3) and rapidly grows to be split into two
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Fig. 6 Streamlines (left) and vorticity countours (right) obtained by two-dimensional numerics for the case

with single vortex patch of initial so= I under the slip boundary conditions on the solid walls; Re=
30000, h=e=0.5. Increment of stream functions is 0.0002, and the vorticity is colored white for the value
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(t=4). At t=5 near r=0.5 and z=0.3 another vortex with negative vorticity is also generated.
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Fig.7 Streamlines (left) and vorticity countours (right) obtained by two-dimensional numerics at Re=30000,

c= I and h= c=0.5 with the initial azimuthal velocity distribution and the intial vorticity as specified

in the text for the slip boundary conditions on the solid walls. Increment of stream functions is 0.0002,

and the vorticity is colored white for the value greater than 1.0 and black for lower than -1.0
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Although the vorticity generation point moves
with time toward the central axis, all the vortices
propagate toward the side wall. In fact, Figure 6
implies that the continuous generation of the
azimuthal vortices and subsequent oscillations in
the flow field shown in Figure 5 is basically due
to the corner vortex (shown at t=2 and 3 in
Figure 5), the result of roll-up of the positive
vorticity sheet on the Ekman boundary-layer.

Figure 7 shows the numerical results for the
case when a pair of vortices, with opposite signs
of vorticity with magnitudes ~=± 10, was situ
ated initially at r=O.6, z=h/2±O.03. The initial
azimuthal velocity Vo was set as

{
-r for r~O.75

Vo=
B(r-r-131ll

) for r>O.75

where B is chosen in such a way that the pro
file is continuous at r=O.75. The profile for the
outer region is similar to (11b), but here it was
obtained through the linear analysis to the in
viscid version of (7) with the first-order correc
tion for the Ekman pumping law included. Since
the Rossby number in this case is I, this profile
in fact mimics the azimuthal velocity distribution
of the spin-up from rest at the time when the front
reaches r=O.75, which was arbitrarily chosen.
The core region bounded by the front therefore
has a zero azimuthal velocity in the inertial frame
of reference, and thus the vortices (these vortices
will be referred to as 'primary' hereafter) simply
move radially outward until they reach the front
r=O.75. After the contact, however, the evolution
is quite different from the ordinarily observed
pattern. As soon as the vortices contact the bor
der, they are surrounded by a pair of crescent
shape vortices on the outer-region side, which
are of course generated by the primary vortices;
see the frames for t=2 in Fig. 7. As a result, the
primary vortices become almost stationary after
ward. During and after this event, the outer region
is disturbed by the presence of the primary
vortices and shows the inertial waves as seen in
Fig. 7, especially after t=8. This means that the
outer region is characteristic of rotating flows,
whereas the core region is free from the rotation
al effect. We can also observe that the primary

vortices weaken very rapidly after they reside at
the border, as can be distinctively captured from
the streamline patterns.

Penetration of vortices from the core to the
outer region may be realized by, for instance,
ejecting a vortex ring into a rotating fluid during
a spin-up process from the bottom of the con
tainer at the time when the front reaches r=O.75.
In this case the vortex ring at first may travel all
the way up to the free surface of the fluid and
then turn toward the outer region. Preparation
for the experimental study on such occasion is
currently performed in the author's laboratory.

5. Conclusions

It was shown that the two-dimensional com
putation for the spin-up flow within a circular
cylinder is in close agreement, in the core region
between the rotational axis and the front, with the
one-dimensional computation with an Ekman
pumping model which includes the first-order
correction. In the outer region between the front
and the side wall, however, the discrepancy is
considerable, and the profile given by the two
dimensional numerics is smoother than that given
by one-dimensional computation. At e=0.5, the
axial plane is dominated by the typical inertial
wave motion superimposed by the well known
Ekman circulation in the spin-up process. The
wave motions turn out to be stronger than ex
pected. However they do not deteriorate, in a
time scale larger than the period of inertial
oscillations, the underlying assumption for the
classical Ekman pumping law; that is, the radial
velocity component is uniform over and the verti
cal component is proportional to the depth from
the free surface, in the inviscid region.

When a small vortex patch is introduced at e=
0.5 without any other perturbation, the vorticity
changes its sign repeatedly and the whole flow
field in the axial plane is dominated by a complex
inertial-wave pattern. Finally, when a pair of
small vortex patches is introduced with initial
distribution of azimuthal velocity component in
two steps, which mimics the situation of a spin
up from rest, the motion of vortices is completely
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different for the core and outer regions. At the
initial stage when the pair is at the core region, it
simply moves straight outward. As soon as the
outer region is touched by the pair vortices at the
border, it blocks the vortices' penetration by sur
rounding them with the crescent-shape vortices,
making the pair motionless. The outer region is
then dominated by the typical inertial waves, and
the pair vortices weaken very fast.

In the future, numerical computations for the
pair vortices' motion at various initial distribu
tion of the azimuthal velocity component are
required to investigate its effect on the motion of
the pair vortices as well as on the inertial-wave
structure. The final goal in the series of studies
on the inertial oscillations and vortical motions is
to develop an improved Ekman pumping model
which has a broad range of applications in the
fluid mechanics area.
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